
Journal of Chromatography, 628 (1993) 3 1-35 

Elsevier Science Publishers B.V., Amsterdam 

CHROM. 24 620 

Normal-phase high-performance liquid chromatography 
with a fluorimetric postcolumn detection system for lipid 
hydroperoxides 

Kazuaki Akasaka, Hiroshi Ohrui and Hiroshi Meguro 
Department of Applied Biological Chemistry, Faculty of Agriculture, Tohoku University. Tsutsumidori-Amamiyamachi I-I, Aoba, 

Sendai 981 (Japan) 

(First received July 7th, 1992; revised manuscript received September 7th, 1992) 

ABSTRACT 

Hydroperoxides (HPO) of triacylglycerols (TG) and cholesterol esters (ChE) were selectively determined at picomole levels with a 
fluorescence detector by postcolumn reaction with diphenyl-I-pyrenylphosphine. Hydroperoxides were separated on a normal-phase 
silica gel column with gradient elution with n-hexane-l-butanol. With this system, TG-HP0 and ChE-HP0 were separated according 
to their class and determined in the range 5-1000 pmol. Detection limits of hydroperoxides of cholesterol linolate and trilinolein were 
about 2 pmol (signal-to-noise ratio = 3) and the relative standard deviations of their peak areas were 3.4% (39.1 pmol, n = 7) and 1.8% 
(32.4 pmol, n = 7), respectively. 

INTRODUCTION 

Lipid peroxidation has attracted much attention 
as one of the factors that cause some diseases and 
ageing [l-4]. However, it has been difficult to deter- 
mine lipid peroxides in biological materials because 
of their trace concentrations, instability and diversi- 
ty. In the initial stage of lipid peroxidation, hydro- 
peroxides are produced both enzymatically and 
non-enzymatically, and they decompose or poly- 
merize gradually to various secondary products. 

Lipid hydroperoxides have been determined ac- 
cording to their class of molecular levels by both 
normal- and reversed-phase high-performance 
liquid chromatography (HPLC) [5-91. UV detec- 
tion at 235 nm, depending on their conjugated diene 
systems, or refractive index detection were used. 
However, these methods suffer problems such as se- 
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lectivity, sensitivity or interferences from co-exist- 
ing compounds. 

Recently, chemiluminescence has been proposed 
for the highly sensitive and selective postcolumn de- 
tection of lipid hydroperoxides using isoluminol 
[lo] or luminol [l 11. Electrochemical detection has 
also been used for this purpose [12]. With chem- 
iluminescence methods, hydroperoxides of choles- 
terol esters (ChE) and triacylglycerols (TG) were 
separated on a reversed-phase ODS column and 
gave multiple peaks based on their fatty acid com- 
positions. Howevere, some hydroperoxides of ChE 
and TG might not be separated from each other. 

Hydroperoxides of ChE and TG were expected to 
separate into their class levels by normal-phase 
HPLC with gradient elution, as non-oxidized lipids 
were separated [13]. However, the system is not suit- 
able for either chemiluminescence or electrochem- 
ical detection because of the incapability of detec- 
tion with non-polar organic solvents such as n-hex- 
ane, which is popular solvent for normal-phase 
HPLC. 
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We have previously reported an aryl phosphine, 
diphenyl- 1-pyrenylphosphine (DPPP), as a fluores- 
cence reagent for lipid hydroperoxides [ 14,151. This 
reagent was successfully applied to the highly sensi- 
tive and selective determination of lipid hydroper- 
oxides by methods HPLC postcolumn [16-181. The 
reaction proceeded in organic solvents such as 
methanol, 1-butanol, acetone, benzene and n-hex- 
ane. This allowed us to use a normal-phase column 
eluted with n-hexane. In this paper, we describe the 
HPLC determination of hydroperoxides of TG and 
ChE separated by a gradient elution with n-hex- 
ane-l-butanol on a silica gel column with postcol- 
umn fluorimetric detection with DPPP. 

EXPERIMENTAL 

Chemicals 
DPPP was synthesized according to the method 

described previously [ 141. Trilinolein (TLo), triolein 
(TOl), cholesteryl linoleate (ChLo), cholesteryl ole- 
ate (ChOl), and cholesteryl arachidonate (ChAr) 
were purchased from Sigma (St. Louis, MO, USA). 
Methylene blue and triphenylphospine were ob- 
tained from Wako (Osaka, Japan). Methanol and 
1-butanol were of HPLC grade from Wako and 
used as received. n-Hexane was used after distill- 
ation. tert.-Butylhydroxytoluene (BHT) was pur- 
chased from Tokyo Kasei Kogyo (Tokyo, Japan). 
Vegetable oils were obtained from Nacalai Tesque 
(Kyoto, Japan). The solvents for dissolving the 
samples contained BHT (0.5 g/l) as an antioxidant. 

Preparation of hydroperoxides 
TLo, ChLo, ChAr and vegetable oils were autox- 

idized at room temperature or 40°C in the dark for 
12-72 h. TO1 and ChOl where photooxidized in the 
presence of 0.1-0.3 mA4 of methylene blue in etha- 
nol. TOl-HPo was also prepared by autoxidation at 
40°C for 1 week. They were used after purification 
as their monohydroperoxides by silica gel column 
chromatography. Their hydroperoxide contents 
were determined by fluorimetry [19]. They were 
stored in a refrigerator at - 25°C as a chloroforn- 
n-hexane (1: 1) solution. 

Separation and detection of hydroperoxides 
The HPLC separation was performed on a Deve- 

losil 60-3 (3 pm) column (100 mm x 4.6 mm I.D.) 
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(Nomura Chemical, Aichi, Japan). The chromato- 
graphic mobile phase were solvent A = n-hexane 
and solvent B = n-hexanel-butanol (20:1, v/v), 
with a linear solvent gradient from 8% to 90% B 
between 2 and 24 min. The flow-rate of the mobile 
phases was 0.6 ml/min. 

The HPLC eluate was monitored by UV absor- 
bance measurement at 235 nm prior to the postcol- 
umn reaction with DPPP, but this was not essential 
for this system. The eluent was mixed with DPPP 
reagent [3 mg in 400 ml of methanol-1-butanol (1: 1, 
v/v)] which was kept in an ice-bath in the dark to 
prevent drifting of the baseline. The flow-rate of the 
reagent was 0.3 ml/min and the mixture was passed 
through a 20 m x 0.5 mm I.D. reaction coil (stain- 
less steel) at 80°C followed by a 0.5 m x 0.5 mm 
I.D. coil in a 20°C water-jacket. Detection was per- 
formed by monitoring the fluorescence intensity at 
380 nm with excitation at 352 nm. The DPPP re- 
agent was degassed by sonication under reduced 
pressure before use. The mobile phase solutions 
were also degassed and stood for 12-24 h. 

Equipment 
The HPLC pump used was a CCPM multipump 

(Tosoh, Tokyo, Japan) in the high-pressure gra- 
dient mode. The pump for the reagent solution was 
an LC-3A (Simadzu, Tokyo, Japan). The reaction 
oven was an RE-8000 reactor. The detectors used 
were a UV-8000 spectrophotometer and an 
FS-8000 spectrofluorimeter (Tosoh). An SC-8010 
data processor (Tosoh) was used. 

RESULTS AND DISCUSSION 

The properties of DPPP and the mechanism of its 
reaction with hydroperoxides have been described 
previously [ 14,151. 

The effect of reaction temperature on the peak 
height of ChLo-HP0 was examined between 40 and 
80°C. The peak became higher with increasing reac- 
tion temperature as shown in Fig. 1. This means 
that hydroperoxides were not decomposed to unre- 
active compounds under these conditions. No in- 
crease in the baseline noise level was observed with 
increase in temperature. The flow-rate of the re- 
agent solution had no effect on the peak height in 
the range 0.2-0.4 ml/min, but at 0.6 ml/min the 
peak became smaller (about 70%) owing to short- 
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Fig. 1. Effect of reaction temperature on the peak height of 
ChLo-HPO. The separation column was Develosil60-3 (100 mm 
x 4.6 mm I.D.) eluted isocratically with hexane-1-butanol 
(lOO:l, v/v) at 0.6 ml/min. 

ening of the reaction time at higher flow-rate. The 
flow-rate of reagent solution adopted in subsequent 
work was 0.3 ml/min. After the reaction, the mix- 
ture was cooled to room temperature by passing it 
through a 0.5-m coil in a water-jacket to prevent 
foaming in the fluorimeter cell. This coil also pre- 
vented the methanol and n-hexane from boiling in 
the reaction coil by increasing the pressure. 

The effects of the solvent of the reagent solution 
on the peak height of ChLo-HP0 were examined. 
n-Hexane alone was not suitable because of the in- 
stability of the baseline. n-Hexane-1-butanol (1: 1, 
v/v) solution gave the highest peak. 1-Butanol and 
I-butanol-methanol (l:l, v/v) gave 85% and 92% 
peak heights, respectively, of that of the n-hex- 
ane-1-butanol. This might be attributed to the vis- 
cosity of the reaction solution. Although l-buta- 
nol-methanol gave a smaller peak than n-hexane-l- 
butanol, it was selected as the solvent in this method 
because the baseline became unstable with n-hex- 
ane-1-butanol with prolonged operation. 

The most significant characteristic of the method 
is that gradient elution with mobile phase from n- 
hexane to n-hexanel-butanol (5:1, v/v) is usable 
without any effect on the peak area of ChLo-HPO. 
The mobile phase solutions were degassed by soni- 
cation under reduced pressure. It was recommend- 
ed that they be used after standing for 12-24 h to 

minimize baseline drift and to improve the repro- 
ducibilities of the peak areas. 

Fig. 2 shows the chromatograms obtained with 
gradient elution. ChLo-HP0 and TLo-HP0 were 
separated from each other. The baseline drift was 
negligibly small for determination in this range. Ta- 
ble I shows the retention times and relative peak 
areas of ChE-HPOs and TG-HPOs detected by flu- 
orimetry. ChLo-HPO, ChAr-HP0 and ChOl-HP0 
gave three or two peaks. This might be attributed to 
the separation of the structural isomers. With the 
exception of the last peak of ChAr-HPO, which was 
eluted at 13.75 min, ChE-HPOs and TG-HPOs 
were eluted between 8.5 and 12.5 min and between 
13.8 and 14.5 min, respectively, independent of 
their structural differences. Although there was on- 
ly one exception tested, this allowed us to assign 
generally the peaks eluted between 8 and 13 min as 
ChE-HP0 and those between 13.8 and 14.5 min as 
TG-HPO. Although unoxidized ChE and TG gave 
no peaks in this system, they eluted at 7.5 min. 

The peak areas of ChOl-HP0 and TOl-HP0 
were smaller than those of other HPOs. This could 
be attributed to the lower reactivities of the HP0 of 
oleic acid derivatives with DPPP [19] or less prob- 
ably to the much loweer reactivity of the ChOl- 
HPOs with a sterically hindered hydroperoxy group 
on the cholesterol moiety. These HPOs could not be 
detected by the UV method because they do not 
contain a conjugated diene system. This means that 
the present method is much superior to the UV 
method in selectivity for hydroperoxides. 
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Fig. 2. HPLC of ChLo-HP0 and TLo-HPO. (A) No injection 
(baseline); (B) ChLo-HP0 (39.2 pmol); (C) TLo-HP0 (42.5 
pmol. 
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TABLE I 

RETENTION TIMES AND RELATIVE PEAK AREAS OF LIPID HYDROPEROXIDES 

Hydroperoxide Oxidation 
methoda 

Retention time (min) Relative peak area 

ChOl-HP0 P 8.50, 12.30 0.57 
ChLo-HP0 A 10.37, 11.50, 12.37 1 .oo 
ChAr-HP0 A 9.24, 12.33, 13.75 1.06 

TOl-HP0 A 13.87, 14.23 0.79 
P 13.83 0.73 

TLo-HP0 A 14.23 1.11 
TLn-HP0 A 14.25 0.92 

Olive oil-HP0 A 13.83 0.98 
Soybean oil-HP0 A 13.80 1.07 
Linseed oil-HP0 A 14.07 1.04 

a Hydroperoxides were prepared by (A) autoxidation and (P) photooxidation with methylene blue. 

The HPOs of polyunsaturated fatty acid deriv- 
atives gave almost the same peak area (R.S.D. = 
6.4%, n = 7). The polyunsaturated fatty acid parts 
are much more sensitive to peroxidation than the 
monoenoic acid and cholesterol parts, and there- 
fore it may be expected that most of the HPOs in 
foods and biological materials were those of poly- 
unsaturated fatty acid derivatives. 

With the proposed method, the calibration 
graphs for ChLo-HP0 and TLo-HP0 showed good 
linearity in the range 51000 pmol (ChLo-HPO, y 
= 13.09x + 44.4, r = 0.9999; TLo-HPO, y = 
13.66x - 12.4, r = 0.9997; x = concentration of 
hydroperoxide; y = peak area). From two calibra- 
tion graphs, the ChE-HPO/TG-HP0 peak-area ra- 
tios were 1.04 (x = 50 pmol) and 0.966 (X = 500 
pmol). This allowed us to use the calibration graph 
of either ChLo-HP0 or TLo-HP0 for the determi- 
nation of HPOs in these ranges. The R.S.D.s of 
their peak areas were 3.4% (ChLo-HPO, 39.1 pmol, 
II = 7) and 1.8% (TLo-HPO, 32.4 pmol, n = 7). At 
lower concentrations, ChE-HP0 gave larger errors 
than TG-HP0 because ChE-HP0 separated into a 
few peaks and the concentration was calculated 
from their total peak areas. Although the peak area 
of ChE-HP0 was larger than that of TG-HP0 at 
lower concentrations, for both the detection limits 
were about 2 pmol (signal-to-noise ratio = 3). This 
was also attributed to the peak separation of ChE- 
HPO. 

Lipid hydroperoxides with a wider range of po- 

larities can also be determined by this method. Fig. 
3 shows the HPLC of hydroperoxides produced by 
autoxidation of trilinolein at 40°C in air. At the be- 
ginning, only TLo-HP0 (monohydroperoxides) 
was detected at 14 min and it increased gradually. 
After incubation for 48 h, very small peaks other 
than TLo-HP0 were also detected at about 18 min. 
The peaks were considered as bishydroperoxides 
because of their polarities and reaction times. The 
more polar hydroperoxides, at 20-28 min, were de- 
tected after autoxidation for 120 h. Some of them 
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Fig. 3. Development of hydroperoxides of TLo by autoxidation 
at 40°C. TLo was sampled after autoxidation for 3 h (POV = 
7.1), 48 h (POV = 91.4), 72 h (POV = 440) and 120 h (POV = 
1470), and aliquots (5.4, 4.8, 3.0 and 2.8 pg, respectively) were 
injected on to the HPLC column as n-hexane solutions. POV = 
Peroxide values determined by our previous method. 
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gave no peaks with UV monitoring at 235 nm. They 
were probably decomposed products of trilinolein 
mono- and bishydroperoxides because they had no 
conjugated diene system and the products of the 
later stages of oxidation. 

CONCLUSIONS 

ChE-HPO, TG-HP0 and hydroperoxides with 
higher polarity were separated by gradient elution 
with a normal-phase column. The postcolumn de- 
tection system with DPPP was successfully com- 
bined with this separation system, and the combina- 
tion made it possible to determine lipid hydroperox- 
ides with high sensitivity and selectivity. The pres- 
ent system should be useful for studying lipid per- 
oxidation in complex systems such as foods and 
biological materials. The 1-butanol content of the 
mobile phase could be raised at least to 16.7% with- 
out influencing the postcolumn reaction. This sug- 
gests the possibility of the determination lipid hy- 
droperoxides with a wider range of polarities using 
this system. 
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